
The Security of Modern Password Expiration:
An Algorithmic Framework and Empirical Analysis

Yinqian Zhang
University of North Carolina at

Chapel Hill
Chapel Hill, NC

yinqian@cs.unc.edu

Fabian Monrose
University of North Carolina at

Chapel Hill
Chapel Hill, NC

fabian@cs.unc.edu

Michael K. Reiter
University of North Carolina at

Chapel Hill
Chapel Hill, NC

reiter@cs.unc.edu

ABSTRACT

This paper presents the first large-scale study of the success of pass-
word expiration in meeting its intended purpose, namely revoking
access to an account by an attacker who has captured the account’s
password. Using a dataset of over 7700 accounts, we assess the ex-
tent to which passwords that users choose to replace expired ones
pose an obstacle to the attacker’s continued access. We develop a
framework by which an attacker can search for a user’s new pass-
word from an old one, and design an efficient algorithm to build
an approximately optimal search strategy. We then use this strat-
egy to measure the difficulty of breaking newly chosen passwords
from old ones. We believe our study calls into question the merit
of continuing the practice of password expiration.

Categories and Subject Descriptors

K.6.5 [MANAGEMENT OF COMPUTING AND INFORMA-

TION SYSTEMS]: Security and Protection—Authentication; H.1.2
[MODELS AND PRINCIPLES]: User/Machine Systems—Hu-

man factors

General Terms

Security, Human Factors

Keywords

User authentication, passwords, password expiration

1. INTRODUCTION
The practice of regularly expiring passwords has been a sta-

ple of computer security administration for over a quarter century
(e.g., [5]). With few exceptions (e.g., [24, 3]), this practice is nearly
universally accepted as a basic tenet by which systems should be
protected, the common wisdom being:

Changing passwords frequently narrows the window
within which an account is usable to an attacker be-
fore he has to take additional steps to maintain access.
... Password expiration does not offer any benefit when

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

an attacker wants to do all of the damage that he’s go-
ing to do right now. It does offer a benefit when the
attacker intends to continue accessing a system for an
extended period of time. [2]

At this level of specificity, such an argument is unquestionably
sound. However, the process of reducing such intuition to a rea-
sonable password expiration policy would ideally be grounded in
measurements of what “additional steps” the policy hoists on an
attacker, so as to be certain that these “additional steps” are an im-
pediment to his continued access. Unfortunately, even to this day,
the security community has yet to provide any such measurements.

In this paper we provide the first analysis of which we are aware
of the effectiveness of expiring passwords. Using a dataset of pass-
word histories for over 7700 defunct accounts at our institution, we
assess the success with which an attacker with access to one pass-
word for an account can break a future password for that account, in
either an offline fashion where the attacker can test many password
guesses or an online one where the attacker is limited to only a few.
Central to our analysis is the development of a transform-based al-
gorithmic framework that an attacker can employ for breaking fu-
ture passwords given preceding ones. Transform-based algorithms
build from the presumption that a typical user will generate her
next password by making systematic modifications to her current
one (i.e., by applying primitive transforms).

The conjecture that users tend to generate future passwords based
on old passwords is by no means new. The best evidence we have
found in the literature to support this conjecture is a study of pass-
word systems reported by Adams and Sasse [1], comprising 139
responses to a web-based questionnaire and 30 semi-structured in-
depth interviews. The hazard of primary concern in this paper was
documented there as follows:

Some users devise their own methods for creating mem-
orable multiple passwords through related passwords
(linking their passwords via some common element)
— 50% of questionnaire respondents employed this
method. Many users try to comply with security rules
by varying elements in these linked passwords (name1,
name2, name3, and so forth).

Although Adams and Sasse reveal that 50% of questionnaire re-
spondents reported “linking their passwords via some comment el-
ement”, it is left unresolved as to whether these linkages are typ-
ically of such a trivial variety. After all, many semantic linkages
(e.g., passwords developed from the first names of the members of
a family with which the user is acquainted) may not be nearly so
simple to exploit in an automated fashion, while still representing
“related passwords” to the user. Quantifying the pervasiveness of

easily exploited linkages between old and new passwords is at the
heart of what we explore in this paper.

Specifically, we consider the challenge of attacking future pass-
words from past ones for the same accounts using a transform-
based search strategy. Our key algorithmic contribution is showing
that an optimal strategy for searching out new passwords from old
ones (in our transform-based framework) is NP-hard to develop —
one of the few pieces of good news we have to offer defenders —
but is also efficiently approximable. We then apply this approxi-
mation algorithm to our dataset to generate approximately optimal
search strategies, and demonstrate the effectiveness of those search
strategies in breaking future passwords from past ones.

The high-order results of our study are alarming, albeit not sur-
prising in light of previous conjectures. We show, for example, that
by instantiating our transform-based algorithmic framework with a
particular class of transforms, we can break future passwords from
past ones in 41% of accounts on average in an offline attack with
expected effort of under 3 seconds per account on a 2.67GHz pro-
cessor. We also show that we can break 17% of accounts on av-
erage in an online attack, with fewer than 5 online guesses in ex-
pectation. Our study additionally reveals a complex relationship
between the susceptibility of accounts to transform-based attacks
and the strengths of passwords chosen in those accounts. In other
results, our study reveals that the previous use of syntactic trans-
forms in selecting passwords is a strong indicator of their future
use: among accounts exhibiting such a previous use of transforms
from a class that we will define, we can break future passwords
from past ones using the same class of transforms in 63% of ac-
counts on average in an offline attack with a similar level of effort.
We also study particular subclasses of transforms; here the results
are as much curious as they are alarming. For example, the past
substitution of characters by their “leet” equivalents (or vice versa)
or by characters residing on the same keyboard keys (e.g., “3” by
“#”) signals the future use of such substitutions in only 5% of ac-
counts, but predicts the future use of a broader class of substitutions
(that we will define) in 75% of accounts.

To summarize, the contributions of our paper are as follows. We
provide an algorithmic framework for attacking future passwords
from expired ones, show that finding the optimal search order in
that framework is NP-hard, and provide an efficient algorithm for
generating an approximately optimal search order (§3). We then
apply these results to a large, real-world dataset to provide the first
analysis of the utility of password expiration for its intended pur-
pose (§4). We close with a discussion of the implications of our
study (§5) and then conclude (§6).

2. RELATED WORK
Our study focuses on password choices over time, forced by ex-

piration. Others have focused on the relationships among users’
password choices in different scenarios. For example, several stud-
ies have examined how users choose passwords for multiple sites
during the same time period (e.g., [1, 12, 7, 28]). Since each user
is free to choose the same password for many sites, this scenario
presumably results in less password variation than the scenario we
consider, where the user is precluded from reusing an expired pass-
word (in our dataset, for a year; see §4). Shay et al. [22] stud-
ied password choices forced by a substantial change in password
policy, where one might suspect that users’ new passwords would
differ more from their old ones than in the scenario we evaluate
(where password policy remained constant over time). In addition
to exploring a different setting than the above works, our study con-
tributes by providing an algorithmic framework and empirical mea-
surement of the incremental cost of finding new passwords from

previous ones. Moreover, unlike studies conducted in a laboratory
environment (e.g., [7, 28]) or based on self-reported data (e.g., [1,
22]), ours directly employs user password choices in practice.

There are other hazards of password expiration that we do not
consider here. For example, Adams and Sasse [1] and Stanton et
al. [25] report that frequent password expiration causes users to
write down their passwords or to choose very simple passwords
that would be more easily broken by a dictionary attack. Lacking
a comparable dataset of passwords for a system that does not per-
form expiration, we have no baseline against which to evaluate the
second claim, in particular. Patterson [21] reported anecdotally that
a user circumvented a password expiration system that recorded a
fixed number of each user’s most recent passwords to prevent their
reuse, by changing his password repeatedly until his favorite is cy-
cled off the list and so could be set again. Since the system from
which our data was obtained prevents the reuse of a password for a
year, it was not vulnerable to such practices.

More distantly related to our work are password strength or mem-
orability studies without specific attention to expiration (e.g., [18,
10, 9, 14]), proposals to help users memorize passwords (e.g., [16,
15, 13]), and proactive checking to force users to choose strong
passwords (e.g., [14, 23, 4, 27]). Algorithms for password crack-
ing (absent previous passwords for the same account) has also been
an active field of research (e.g., [20, 19, 26]); as we will describe,
we utilized some of these techniques in order to initially crack pass-
words as a precursor to our study (see §4). To our knowledge, how-
ever, our study here is the most extensive algorithmic and quantita-
tive analysis to date of attacking new passwords from expired ones.

3. TRANSFORM-BASED ALGORITHMS
As discussed in §2, reports such as that by Adams and Sasse [1]

suggest that users often respond to password expiration by trans-
forming their previous passwords in small ways. In this section,
we use this insight to develop an algorithmic framework that takes
as input an old password σk for account k, and that searches for
the new password πk for that account. Our algorithmic framework
tries to guess πk by building from σk using a set T of primitive
transforms. If P denotes the password space, then each transform
t : P → P ∪ {⊥} is a deterministic algorithm that takes as in-
put a password and that produces a new password or ⊥ (failure).
Intuitively, we think of each transform as making a small modifi-
cation to an existing password (e.g., change the first “a” to “A”).
If the transform is not applicable to the existing password (e.g.,
the password has no “a”), then the transform produces ⊥. Let
T =

Sd

ℓ=1 T ℓ be the set of all sequences of transforms up to length
d, which can be organized as a tree rooted at an additional, empty
sequence 〈·〉 and in which ancestors of any node ~t ∈ T are exactly
the prefixes of ~t. An example such tree is shown in Figure 1.

When searching T to generate πk, the adversary visits the nodes
of T in some order ~t1~t2... Visiting a new node ~ti requires the ap-
plication of a single additional primitive transform t ∈ T to extend
some ~ti′ earlier in the order, i.e., such that i′ < i. In doing so,
the adversary produces a new guess ~ti(σk) for πk. However, be-
cause it is possible that ~ti(σk) = ⊥ (i.e., ~ti(σk) fails) or ~ti(σk) ∈
S

i′<i{~ti′(σk)} (i.e., ~ti(σk) resulted in a duplicate guess), search-
ing T generally yields fewer than |T | unique guesses.

The order in which the adversary searches T can make a large
difference in the performance of the search to find πk, particularly
since the size of T grows exponentially in d (specifically, |T | =
((|T|d+1 − 1)/(|T| − 1)) − 1). In the rest of this section, we
explore algorithms for optimizing this order using old passwords
σ1..n and corresponding new passwords π1..n for a collection of
accounts 1..n as “training data”.

σk ="password"

πk =
"pa$sword"?

s → $

πk =
"Password"?

p → P

πk =
"pa$$word"?

s → $

πk =
"Pa$sword"?

p → P

πk =
"Pa$sword"?

s → $

⊥

p → P

Figure 1: An example transform tree T . Each node repre-

sents the transform sequence ~t encountered on the path from

the root to this node, which in this case is composed of location-

independent transforms (i.e., TLI, see §3.3). Depth is d = 2. A
search begins at the root with an input password σk. Upon vis-

iting a node, the last transform in the corresponding sequence is

applied to the output (if not ⊥) of its parent node. Each output

is tested for equality with the target password πk by hashing it.

More specifically, consider a random account r
R
← {1..n}. Let

~t(σr) = πr denote the event that the sequence ~t ∈ T , applied in
order to a password σr, will produce πr , and so P

`

~t(σr) = πr

´

is
the probability of this event under random choice of r. Let πr ∈
T (σr) denote the event

W

~t∈T
~t(σr) = πr, i.e., that there is some

~t ∈ T such that ~t(σr) = πr . The sense in which we seek to
optimize the search order for the nodes of T is to minimize the
expected number of nodes of T that need to be searched, under
random choice r of account, conditioned on the event πr ∈ T (σr).
As such, we consider the following problem:

EXPECTED MIN TRANSFORM SEARCH (emts): Given is
a set T of transforms, a depth d, and collections σ1..n and
π1..n of old and new passwords, respectively, for accounts
1..n. Let T =

Sd

ℓ=1 T ℓ, and let orderemts : T → {1..|T |}

be a bijection, such that for any distinct ~t, ~u ∈ T , if ~t is a
prefix of ~u, then orderemts(~t) < orderemts(~u). The objective
is to find orderemts so as to minimize

E(min{i : ~ti(σr) = πr} | πr ∈ T (σr)) (1)

where ~ti = order
−1
emts(i) and where the expectation is taken

with respect to random selection of r
R
← {1..n}.

In words, the EXPECTED MIN TRANSFORM SEARCH problem
is to find a search order for T that minimizes the expected cost
of finding πr from σr (when πr can be generated σr, i.e., when
πr ∈ T (σr)) for a randomly selected account r.

It will be convenient later to have the additional notation

coveremts(k) = min
~t:~t(σk)=πk

orderemts(~t)

for any πk ∈ T (σk). Then, we can equivalently write (1) as

E(coveremts(r) | πr ∈ T (σr))

3.1 NP-Hardness of emts

A challenging aspect of EXPECTED MIN TRANSFORM SEARCH

is that multiple transform sequences ~t can transform the same input
into the same output. One example is shown in Figure 1, where two

paths from the root (transform sequences) both produce “Pa$sword”
from “password”; in this case, this occurs because the transform
sequences ~t and ~u that produce them are equivalent. This can hap-
pen even when ~t and ~u are not equivalent, such as if ~t replaces all
instances of “s” with “$”, ~u replaces the first character (whatever
it is) with “$”, and the input password is σk = steve79#.

Such overlap in coverage is characteristic of set cover problems,
and in fact we can show the NP-hardness of emts by reducing from
the following NP-hard problem:

MIN SUM SET COVER (mssc) [11]: Given is a set U and
a collection S of subsets of U where

S

S∈S
S = U . Let

ordermssc : S → {1..|S|} be a bijection, and let covermssc :
U → {1..|S|} be defined by

covermssc(j) = min
S∋j

ordermssc(S),

i.e., covermssc(j) is the first subset in the ordering to con-
tain j. The objective is to find ordermssc so as to minimize
P

j∈U covermssc(j).

Given an instance (U,S) of MIN SUM SET COVER, denote U =
{1..n}. We reduce this instance of mssc to an equivalent instance
of emts by creating, for each j ∈ U , an “account” with a pair of
old and new passwords, and for each S ∈ S , a transform that maps
the old passwords for the accounts corresponding to its elements to
their new passwords. Specifically, for each j, create an old pass-
word σj and a new password πj , such that σ1..n and π1..n comprise
2n distinct passwords. For each S ∈ S , create a primitive trans-
form tS such that tS(σj) = πj if j ∈ S and such that tS fails on
any other input. The set of |S| such primitive transforms comprise
the set T. Set depth d = 1.

Consider any orderemts for searching T . Set ordermssc(S) ←
orderemts(〈tS〉). Then,

E(coveremts(r) | πr ∈ T (σr))

= E (coveremts(r)) since πk ∈ T (σk) for all k

=
n

X

i=1

i · P (coveremts(r) = i)

=

n
X

i=1

i ·
|{k ∈ {1..n} : coveremts(k) = i}|

n

=

n
X

i=1

i ·
|{j ∈ U : covermssc(j) = i}|

n

=
1

n

X

j∈U

covermssc(j)

Thus, orderemts minimizes E(min{i : ~ti(σr) = πr} | πr ∈ T (σr))
if and only if ordermssc minimizes

P

j∈U covermssc(j).

3.2 Approximation Algorithm for emts

Feige et al. [11] provided an efficient greedy algorithm Bmssc that
is a 4-approximation for mssc. Specifically, Bmssc defines its order
orderBmssc as follows: order

−1
Bmssc

(i) is the set S that includes the

most elements of U that are not included in
S

i′<i order
−1
Bmssc

(i′).
The algorithm Bmssc can be used to build a 4d-approximation

algorithm Bemts for emts, as follows. Define for each ~t ∈ T the
set S~t ← {k : ~t(σk) = πk}, and let S ← {S~t}~t∈T and U ←
S

~t∈T
S~t . Bmssc(U,S) then induces an order orderBmssc on these

sets and, in turn, the corresponding transform sequences; if i =
orderBmssc(S~t), then denote ~t by ~ui. Note that ~u1, ~u2, .., however,
might not constitute a feasible search order for T , since each ~ui

might not be preceded by its prefixes. The algorithm Bemts thus
works by inserting the prefixes of ~ui just before ~ui, as needed.

Algorithm Bemts(T, d, σ1..n, π1..n):

1: T ←
Sd

ℓ=1 T ℓ

2: for ~t ∈ T do

3: S~t ← {k : ~t(σk) = πk}

4: U ←
S

~t∈T
S~t ; S ← {S~t}~t∈T

5: orderBmssc ← Bmssc(U,S)
6: i ← 0
7: for i′ = 1..|T | do

8: ~t ← ~u : orderBmssc(S~u) = i′

9: for i′′ = 1..|~t| do

10: if ~t[1..i′′] 6∈ {order
−1
Bemts

(1)..order
−1
Bemts

(i)} then

11: i ← i + 1
12: orderBemts

(~t[1..i′′]) ← i
13: return orderBemts

Figure 2: Search algorithm Bemts

More specifically, Bemts creates a new order orderBemts as shown
in Figure 2. It first queries Bmssc(U,S) (line 5) using U and S cre-
ated as described above (lines 2–4). It then steps through the nodes
of T in the order that orderBmssc prescribes for their corresponding
sets S (lines 7–8). For each ~t considered, the algorithm inserts any
missing prefixes of ~t (lines 9–12) and, finally, ~t itself (lines 9–12
when i′′ = |~t|). Note that in line 10, the notation ~t[1..i′′] denotes
the length-i′′ prefix of ~t.

For any k such that πk ∈ T (σk), define

coverBmssc(k) = min
S~t

∋k
orderBmssc(S~t)

coverBemts(k) = min
~t:~t(σk)=πk

orderBemts(~t)

and let cover
∗
mssc and cover

∗
emts denote the functions covermssc and

coveremts resulting from optimal solutions to mssc instance (U,S)
and emts instance (T, d, σ1..n, π1..n), respectively. Then,

E(coverBemts
(r) | πr ∈ T (σr))

E(cover∗emts(r) | πr ∈ T (σr))

=
E(coverBemts

(r) | πr ∈ T (σr))

E(coverBmssc(r) | πr ∈ T (σr))
·

E(coverBmssc(r) | πr ∈ T (σr))

E(cover∗emts(r) | πr ∈ T (σr))

=

P

k coverBemts
(k)

P

k coverBmssc(k)
·

P

k coverBmssc(k)
P

k cover∗emts(k)

≤

P

k coverBemts
(k)

P

k coverBmssc(k)
·

P

k coverBmssc(k)
P

k cover∗mssc(k)
(2)

≤ d · 4 (3)

where the sums are taken over all k such that πk ∈ T (σk). Above,
(2) follows because

P

k cover
∗
mssc(k) ≤

P

k cover
∗
emts(k). (3)

holds since
P

k coverBmssc(k) ≤ 4 ·
P

k cover
∗
mssc(k) [11], and

because for any ~t, orderBemts(~t) ≤ d · orderBmssc(S~t), since Bemts

may insert up to d nodes of T before each node ~ti output by Bmssc.
(|~t| in line 9 is at most d.) Therefore,

P

k coverBemts(k) ≤
P

k d ·
coverBmssc(k). So, Bemts is a 4d-approximation for emts.

The time complexity of Bmssc(U,S) is O(|U | · |S|). As used in
Bemts(T, d, σ1..n, π1..n), where |U | ≤ n and |S| = |T |, its com-
plexity is thus O(n|T |). Bemts also performs up to d loop iterations
per ~t ∈ T , effectively walking T from its root to ~t (lines 9–12).
Consequently, the time complexity of Bemts(T, d, σ1..n, π1..n) is
O(n|T |+d|T |). Finally, because |T | = (|T|d+1−1)/(|T|−1)−
1 = O(|T|d), the complexity of this algorithm is O((n + d)|T|d).

T |T|
|T |

d = 1 d = 2 d = 3 d = 4

TED 3402 3402 11577006 3.9 × 1010 1.3 × 1014

TEDM 4371 4371 19110012 8.4 × 1010 3.7 × 1015

TLI 534 534 285690 152558994 8.1 × 1010

TLIP 50 50 2550 127550 6377550

Figure 3: Sizes of transform sets and resulting trees

3.3 Instantiating Bemts with Transforms
We consider the following sets T of transforms. Figure 3 shows

the sizes of these sets and the trees that result at different depths d.

• Edit distance: The edit distance between two strings is the min-
imum number of character insertions, deletions or replacements
necessary to turn one string into the other. For our analysis, the
transforms for T = TED that we apply to an input σ of length ℓ
include character deletion, insertion, and replacement at a spe-
cific position. The number of position-dependent transforms in
TED thus depends on ℓ. In our evaluations, we constructed TED

to accommodate password lengths up to ℓ = 18, as this accom-
modated all password lengths that occurred in our data (see §4).

• Edit distance with substring moves: Edit distance with sub-
string moves [8] is a variation of edit distance that permits a
substring move in one step. The transforms T = TEDM in this
case include all of TED in addition to:

– A substring move with parameters 1 ≤ j ≤ j′ ≤ j′′ ≤ ℓ
results in σ[1..(j −1)]σ[j′..j′′]σ[j..(j′ −1)]σ[(j′′ +1)..ℓ].

For example, password could be changed to wordpass in a
single substring move (with j = 1, j′ = 5, and j′′ = 8).

• Hand-crafted location-independent transforms: We also con-
sider a set T = TLI that, unlike the case of edit distance with or
without moves, can be applied at any location in a password.
The types of such transforms that we include in TLI cover eight
disjoint categories:

Tcap: capitalization (e.g., “17candy#” → “17candY#”)
Tdel: digit and special character deletion

(e.g., “alex28!!!” → “alex28!!”)
Tdup: digit and special character duplication

(e.g., “stinson1!” → “stinson11!”)
Tsub: digit and special character substitution with the same

character type (e.g., “tar!heel1” → “tar!heel2”)
Tins: sequential insertion (e.g., “dance#7” → “dance#78”)
Tleet: leet transformation (e.g., “raven#1&” → “r@ven#1&”)
Tmov: letter, digit or special character block moves

(e.g., “$steve27” → “27$steve”)
Tkey: replacement of a digit or special character with the

alternate character for the same key
(e.g., “l00py*!2” → “l00py*!@”)

In total, we derived 534 location-independent transforms in TLI.
For completeness, the full list is provided in Appendix A. Given
time constraints, it was not possible to apply these transforms
beyond d = 3. However, to explore the impact of expanding
our search to larger values of d, we consider one final category.

• Pruned hand-crafted location-independent transforms: We
selected the 50 most successful transforms TLIP ⊆ TLI at d = 1.
The specifics of how we choose this subset is discussed in Ap-
pendix A. Given this reduced set TLIP, we were able to search
to d = 4 in our experiments.

4. EVALUATION
For this study, we examine password hashes for accounts of the

ONYEN (http://onyen.unc.edu) single-sign-on system at
our institution. Each member of the university community is as-
signed an ONYEN (an acronym for “Only Name You’ll Ever Need”).
The password for each ONYEN is required to change every 3 months;
ONYENs for which this change does not occur are suspended. The
password management policy requires a user to follow the follow-
ing rules when creating a new password for an ONYEN:

• It cannot have been used for this ONYEN in the last year.
• It must be at least 8 characters long.
• It must contain at least one letter and at least one digit.
• It must contain at least one of the following special characters:
!@#$%&*+={}?<>"’

• It must share fewer than six (or length of the ONYEN, if less
than six) consecutive common characters with the ONYEN.

• It must not start with a hyphen, end with a backslash, start or
end with a space, or contain a double-quote anywhere except as
the last character.

The dataset we acquired contains 51141 unsalted MD5 pass-
word hashes from 10374 defunct ONYENs (used between 2004
and 2009), with 4 to 15 password hashes per ONYEN, i.e., the
hashes of the passwords chosen for that ONYEN sequentially in
time. The ONYENs themselves were not provided with the pass-
words, and so we have no knowledge of the users to whom these
passwords corresponded. However, since ONYENs are broadly
used by UNC faculty, staff, and students, and employees of UNC
hospitals, we believe that this data reflects a diversity of user edu-
cations and backgrounds. The data collected represents a time span
during which the password management policy was the same as it
is today. Another pertinent fact is that ONYENs are widely used at
UNC for private services such as email, access to payroll manage-
ment, benefits selection, etc. As such, ONYENs play a significant
role in users’ daily lives, in contrast to seldomly used web-based
accounts. Moreover, because the ONYEN is required for gaining
access to sensitive information (e.g., payroll) users have strong in-
centives for choosing “good” passwords.

 0

 0.2

 0.4

 0.6

 0.8

 1

4 5 6 7 8 9 10 11 12 15

2397 6746 942 210 37 26 10 4 1 1

F
ra

ct
io

n
 o

f
ac

co
u
n
ts

Number of passwords in account

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Figure 4: Passwords cracked per account in our dataset. Each

bar represents accounts with the number of passwords indi-

cated on the x-axis. The number of such accounts is shown

above each bar. Regions within each bar show the fraction of

these accounts for which the indicated number of passwords

were cracked.

Since we were provided only hashes, the first challenge was to
crack as many of these passwords as we could. Due to confiden-

tiality agreements that accompanied this data, we were unable to
distribute this data widely to many machines. Instead, all of our
cracking activity that involved accessing these hashes was isolated
on two specially configured machines, each with two quad-core
2.67GHz processors and 72GB of RAM. One computer was avail-
able for this activity starting mid-October 2009, and the second
came online in January 2010, though neither could be exclusively
dedicated to password cracking.

We employed various approaches to crack passwords: dictionary-
based password cracking using “John the Ripper” (http://www.
openwall.com/john/), including its “Markov mode” provided
as a patch for version 1.7.6; brute-force password cracking; and
rainbow tables [20]. The dictionary-based approach was most ef-
fective, especially when combined with the word-list-generating
method of Weir et al. [26]. For passwords we cracked via these
techniques, we further attempted to crack other passwords for the
same ONYEN using the techniques we described in §3. (We will
evaluate the effectiveness of those techniques in §4.1–4.2.)

At the time of this writing, we have cracked 31075 passwords for
7936 ONYENs. Figure 4 shows the fraction of passwords cracked
for each ONYEN, with ONYENs separated by the number of hashes
available for it. For example, as illustrated in the left-most column,
which describes accounts with four passwords, we broke no pass-
words in 25% of these accounts; one password in 10%; two pass-
words in 10%; three passwords in 15%; and all four passwords in
40%. Overall, among the 7936 ONYENs in which we cracked at
least one password, we broke all passwords belonging to 54% of
these ONYENs, and broke at least half in 90%.

Since our goals specifically focus on guessing future passwords
from past ones for the same ONYENs, we restrict our attention to
only those ONYENs for which we have at least one cracked pass-
word and, among ONYENs with only one cracked password, those
in which the cracked password is not the last one in the account.
In the rest of this paper, we use the n = 7752 ONYENs meeting
this criterion as our experimental data. For such accounts, though,
even passwords we have not cracked but that temporally follow a
cracked password can be useful in our evaluations. For example,
in §4.1 we define each σk to be a password that has been cracked
and the hash for which is not the last for its ONYEN, and πk to
be the password corresponding to a hash for the same ONYEN
that came temporally after that of σk (but not necessarily immedi-
ately), cracked or not. Then, given σk, we can determine whether
πk ∈ T (σk), even if we have not cracked πk . More to the point,
if we have not cracked πk, then this implies that πk 6∈ T (σk). In
the case that we have cracked πk, then we can obviously determine
whether πk ∈ T (σk) and, if so, the value of coverBemts(k).

4.1 Evaluation Over All Accounts
We now evaluate the effectiveness of the Bemts approach in break-

ing passwords. To do so, we perform a series of trials; in each,
σ1..n and π1..n are fixed. To instantiate σ1..n and π1..n for a trial,
we populate σk with a password from account k chosen uniformly
at random from those we have cracked, excluding the last password
for the account. We then instantiate πk with a password (cracked
or uncracked) from account k chosen uniformly at random from
those that followed σk temporally. As discussed in §4, if we have
not cracked πk, this implies πk 6∈ T (σk) (for any T we consider),
and so such a password pair contributes to the probability of event
πr 6∈ T (σr) under random selection of r. For any such instanti-
ation of σ1..n and π1..n, we then conduct a trial as defined below.
The numbers we report are the average of at least 10 trials.

In each trial, we partition the indices 1..n into five blocks, and
then perform a five-fold cross validation; i.e., we perform tests in

T d P (πr ∈ T (σr))
Algorithm Bemts (§3.2) Breadth-first search

E(min{i : ~ti(σr) = πr} | πr ∈ T (σr)) E(min{i : ~ti(σr) = πr} | πr ∈ T (σr))
(skipped, failed, viable) (skipped, failed, viable)

TED
1 0.26 145.29 (0.00, 33.41, 111.88) 740.03 (0.00, 64.12, 675.91)
2 0.39 284790.10 (37054.93, 112244.51, 135490.65) 562986.90 (48461.52, 238323.80, 276202.00)

TEDM
1 0.28 224.51 (0.00, 69.22, 155.29) 913.59 (0.00, 168.79, 744.81)
2 0.41 481607.44 (101137.59, 206639.18, 173830.67) 851020.60 (126514.20, 399700.70, 324805.60)

TLI

1 0.25 65.52 (0.00, 53.21, 12.31) 261.57 (0.00, 220.15, 41.42)
2 0.37 15534.08 (13022.51, 2188.12, 323.44) 33293.50 (28034.53, 4627.74, 631.23)
3 0.41 3082677.88 (3021178.93, 53122.41, 8376.54) 3504117.38 (3432836.84, 61667.63, 9612.92)

TLIP

1 0.17 17.35 (0.00, 13.15, 4.21) 16.63 (0.00, 12.55, 4.08)
2 0.24 84.49 (45.87, 28.41, 10.20) 326.39 (239.57, 66.91, 19.92)
3 0.28 2543.04 (2366.45, 131.52, 45.06) 5630.27 (5256.80, 283.92, 89.55)
4 0.30 91952.11 (90267.93, 1211.53, 472.65) 199697.40 (196940.90, 2035.80, 720.76)

Figure 5: Evaluation of all accounts (§4.1). Each value is an average over 10 trials.

which a different block is used as testing data after training on
the other four. More specifically, in each test the four “training”
blocks are used to select the order in which the nodes of T are
searched, per algorithm Bemts. Then, each (σk, πk) in the “testing”
block is checked to determine if πk ∈ T (σk) and, if so, the value
of coverBemts(k). This allows us to compute P (πr ∈ T (σr)) and
E(min{i : ~ti(σr) = πr} | πr ∈ T (σr)) for this trial. We also
dissect this expected value, reporting the average number of nodes
~t (prior to finding πk) that were skipped because for some strict
prefix ~u of ~t, ~u(σk) = ⊥; that failed because ~t(σk) = ⊥; and that
were viable in that ~t(σk) 6= ⊥.

To demonstrate the cost savings in breaking passwords offered
by Bemts, we also show in Figure 5 the analogous costs if the tree
T were searched using breadth-first search. Here we see that Bemts

offers significant cost savings, reducing E(min{i : ~ti(σr) = πr} |
πr ∈ T (σr)) from that achieved by breadth-first search by roughly
75% or more when d = 1 and by roughly 45% or more when
d = 2. The one exception in the d = 1 case is T = TLIP; this is
due to the fact that TLIP was already chosen to include only those
transforms t yielding the largest P (πr = t(σr)) (see Appendix A)
and are chosen in decreasing order of that value. And, while the
advantages of Bemts diminish for d = 3 in the case T = TLI, we
conjecture that this is due to a lack of sufficient training data for
such a large transform search tree. Note that the improvement of-
fered by Bemts for T = TLIP remains above 50% through d = 4.

One might argue that even given the higher cost of searching T
using a breadth-first search strategy, doing so might still be practi-
cal for the trees T considered in Figure 5. Additionally, producing
an optimized search order via Bemts is a nontrivial computation that
grows as the search trees and training datasets get larger. Breadth-
first search imposes no such up-front cost.

While true, for larger trees than we have considered so far, the
one-time cost of Bemts should be more than offset by the cost sav-
ings that orderBemts offers per account attacked. It also enables one
to more effectively short-circuit tree searches early. For example,
for the case T = TLI and d = 2, we find that 80% of accounts
that will be broken by T will be broken in the first 620 elements
of orderBemts , or after searching only about 0.2% of the tree. To
crack the same fraction of accounts, breadth-first search explores
about 110000 elements (about 40% of the tree). The cost savings
of Bemts are particularly important for online attacks, where pass-
word guesses are limited; we will discuss these below.

Implications for offline attacks.
There are two contexts in which it makes sense to interpret the re-

sults shown in Figure 5, corresponding to the two contexts in which

passwords are typically used. We first consider passwords that can
be subjected to an offline attack; for example, a password may be
used to encrypt files, and the attacker would like to retain access
to files encrypted under a password following a password change.
In this case, the adversary, knowing σk and having access to files
encrypted under πk, faces an offline attack to find πk. The actual
runtimes, on average, to break πk in such a situation with the trees
T considered in Figure 5 are shown in Figure 6. Skipped, failed
and viable nodes in T do not contribute equally to these runtimes:
skipped nodes cost only the time to discard or avoid them; failed
nodes ~t cost the time to attempt the last transform in the sequence ~t
(on a previously computed result); and viable nodes ~t cost the time
to apply the last transform and to hash the resulting password, to
test against that of πk.

Arguably the key takeaway from this figure, however, is that even
the most expensive password cracking effort (T = TLI, d = 3)
required an average of only under 3 seconds per password that it
broke. In combination with the success rate P (πr ∈ T (σr)) for
this configuration (see Figure 5) we reach a fairly alarming con-
clusion: On average, roughly 41% of passwords πk can be broken

from an old password σk in under 3 seconds.

Implications for online attacks.
The second context in which to consider the results of Figure 5

is an online attack, in which the attacker knows σk and must sub-
mit online guesses to a server in order to break πk . Many servers
are configured to permit only few wrong password guesses before
“locking” the account, and so the relevant measure becomes the
fraction of accounts the attacker can break in the initial several vi-
able guesses when examining nodes in order of orderBemts . Fig-
ure 5 indicates, for example, that using TLIP with d = 1, an av-

erage of 17% of accounts can be broken in under five online pass-

word guesses in expectation. Figure 7 provides a more refined view
into the effectiveness of each transform search for an online attack;
each graph shows the average fraction of passwords cracked for a
given number of viable guesses produced by searching the specified
transform set T to the indicated depth d. For example, Figure 7(d)
shows that an average of 13% of accounts can be broken (with cer-
tainty) in 5 online guesses, and 18% can be broken in 10 guesses.

Password strength versus susceptibility to transform-
based search.

It is tempting to assume that the new passwords that are most
susceptible to transform-based search from old passwords are those
that are intrinsically weak. After all, the same “laziness” that causes
a user to simply replace a character or two in σk to create πk would,

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1 2 1 2 1 2 3 1 2 3 4

A
v
er

ag
e

ru
n
ti

m
e

fo
r

cr
ac

k
in

g
 o

n
e

p
as

sw
o
rd

 (

in
 m

ic
ro

se
co

n
d
s)

d

TED TEDM TLI TLIP

846

1935880

1236

2856468

109

16382

2831268

30

134

2914

67157

Figure 6: Average runtime to crack a password using orderBemts

(microseconds on a 2.67GHz processor). Average over 10 trials,

with one standard deviation shown.

 0

 5

 10

 15

 20

 25

 1 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
 o

f
ac

co
u
n
ts

 c
ra

ck
ed

 (
%

)

Number of password guesses

		d=1
		d=2

(a) TED

 0

 5

 10

 15

 20

 25

 1 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
 o

f
ac

co
u
n
ts

 c
ra

ck
ed

 (
%

)

Number of password guesses

		d=1
		d=2

(b) TEDM

 5

 10

 15

 20

 25

 30

 35

 1 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
 o

f
ac

co
u
n
ts

 c
ra

ck
ed

 (
%

)

Number of password guesses

		d=1
		d=2
		d=3

(c) TLI

 5

 10

 15

 20

 25

 30

 1 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n
 o

f
ac

co
u
n
ts

 c
ra

ck
ed

 (
%

)

Number of password guesses

		d=1
		d=2
		d=3
		d=4

(d) TLIP

Figure 7: Fraction of passwords πk found as function of viable

guesses ~t(σk) made in order of orderBemts . Average of 10 trials.

it might seem, cause the user to select passwords that are generally
weaker when viewed in isolation. To test this conjecture, we cat-
egorized the 7752 accounts in our data according to the average
estimated entropy of the passwords for that account that we were
able to crack. To perform this calculation, we estimated the entropy
of each password using the NIST methodology [6]. Among other
rules, this methodology prescribes adding six bits to the estimated
entropy of a password if the password survives a dictionary attack.
Due to the inclusion of nonalphabetic characters in our passwords,
none of these passwords would be present in a dictionary of words
consisting of only alphabetic characters, and so we awarded these
six bits of entropy to a password only if it survived the dictionary at-
tack after removing its nonalphabetic characters. The dictionary we
used was derived from the en_US dictionary in Hunspell (Kevin’s
Word List Page: http://wordlist.sourceforge.net/).
After converting all uppercase characters in the original dictionary
to lowercase (all alphabetic password characters were converted to
lowercase, as well) and deleting all purely numeric entries, the dic-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5

F
ra

ct
io

n
 o

f
A

cc
o
u
n
ts

 C
ra

ck
ed

Quintiles of Accounts Ordered by Estimated Entropy

0.51

0.21

0.43 0.43
0.39

(a) TED, d = 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5

F
ra

ct
io

n
 o

f
A

cc
o
u
n
ts

 C
ra

ck
ed

Quintiles of Accounts Ordered by Estimated Entropy

0.53

0.22

0.44 0.45
0.41

(b) TEDM, d = 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5

F
ra

ct
io

n
 o

f
A

cc
o
u
n
ts

 C
ra

ck
ed

Quintiles of Accounts Ordered by Estimated Entropy

0.54

0.22

0.44 0.43
0.40

(c) TLI, d = 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5

F
ra

ct
io

n
 o

f
A

cc
o
u
n
ts

 C
ra

ck
ed

Quintiles of Accounts Ordered by Estimated Entropy

0.41

0.15

0.34
0.32

0.26

(d) TLIP, d = 4

Figure 8: P (πr ∈ T (σr)) per quintile of accounts ordered by

entropy (average estimated entropy of passwords in account).

The average account entropies per quintile are 19.21, 22.07,
24.01, 25.32 and 28.02. Average of 10 trials, with one standard

deviation shown.

tionary had 49875 words. Testing with other dictionaries did not
significantly alter our results.

In Figure 8 we show the susceptibility of accounts to transform-
based search as a function of password strength in the accounts.
Each figure represents results averaged over 10 trials, in which an
old password σk and new password πk were chosen for each ac-
count k in the same way as in our previous experiments. To produce
these figures, the accounts were ordered in increasing order accord-
ing to the average estimated entropy of the passwords in the account
and then divided into quintiles. Each bar in Figure 8 corresponds to
one quintile of accounts, and shows the fraction of those accounts
that succumbed to transform-based search (i.e., P (πr ∈ T (σr)),
with r chosen at random from that quintile).

These graphs suggest that the weakest passwords are, in fact, the
most susceptible to transform-based search, in that the first quintile
has the largest fraction of accounts broken. This lends credibility to
the intuition that laziness in initial password selection is correlated
with laziness in selecting a new password after expiration. To our
surprise, however, the fraction of accounts susceptible to transform-
based search does not monotonically decrease as a function of aver-
age estimated entropy per account, but rather reaches its minimum
in the second quintile. One possible explanation for the increase in
the third through fifth quintiles is that the increased mental effort
required to choose a good password discourages these users from
investing that effort again to generate a completely new password
after expiration. If true, then increasing the strength requirements
on individual passwords may diminish the utility of expiration fur-
ther. Additional tests are required to validate this, however.

4.2 Accounts with History of Transform Use
We now focus our attention on accounts that previously exhib-

ited selection of a new password by applying transforms to a pre-
vious one, to evaluate the extent to which past use of transforms
predicts future use. If this extent is substantial, then an adversary
with knowledge of past use of transforms within an account may

T d
Accounts filtered using Tpast = T n randomly selected accounts

n P (πr ∈ T (σr))
E(min{i : ~ti(σr) = πr} | πr ∈ T (σr)) E(min{i : ~ti(σr) = πr} | πr ∈ T (σr))

(skipped, failed, viable) (skipped, failed, viable)

TED 1 3412 0.52 130.61 (0.00, 28.02, 102.59) 193.62 (0.00, 41.37, 152.25)
2 4530 0.61 284499.41 (33964.39, 113450.82, 137084.20) 331665.28 (41485.51, 132077.65, 158102.12)

TEDM
1 3729 0.50 203.78 (0.00, 62.37, 141.40) 285.10 (0.00, 92.51, 192.59)
2 4679 0.61 470390.25 (88885.91, 207050.44, 174453.89) 575157.53 (121778.91, 245913.91, 207464.71)

TLI

1 3417 0.50 67.08 (0.00, 55.12, 11.96) 76.58 (0.00, 62.67, 13.91)
2 4292 0.60 16395.12 (13743.61, 2312.55, 338.96) 18797.81 (15779.08, 2633.67, 385.06)
3 4532 0.63 3321484.36 (3253944.90, 58255.08, 9284.39) 3353629.77 (3285529.91, 58768.99, 9330.87)

TLIP

1 2678 0.39 17.68 (0.00, 13.71, 3.97) 18.20 (0.00, 13.78, 4.41)
2 3406 0.48 84.38 (45.59, 29.02, 9.76) 113.66 (69.22, 32.88, 11.56)
3 3608 0.52 2661.70 (2472.10, 141.81, 47.80) 3243.70 (3025.68, 163.51, 54.51)
4 3721 0.55 96135.19 (94500.19, 1187.15, 447.86) 114179.84 (112205.57, 1427.06, 547.22)

Figure 9: Evaluation of accounts with history of transform use (§4.2) using algorithm Bemts. Averages over 10 trials.

focus his attention on retaining access to this account (in lieu of
others) across password changes, owing to the increased likelihood
of transform use again. We are also interested in learning the extent
to which past uses of certain transforms predicts future use of oth-
ers. For example, if a user previously transformed an old password
σ′

k to a subsequent password π′
k by replacing a “o” with “0”, then

perhaps this user substituted an “i” with “1” when generating his
current password πk from from his previous one σk.

Our framework for evaluating the additional utility to the attacker
of past transform use works as follows. Consider a set Tpast of
primitive transforms, which yield a depth-d transform tree Tpast.
We restrict our attention to accounts k such that there exist cracked
passwords σ′

k and π′
k such that π′

k ∈ Tpast(σ
′
k); all other accounts

are filtered out. Let the remaining accounts be renumbered 1..n,
where n now denotes the number of remaining accounts. We then
repeat the analysis of §4.1 identically using a set T of primitive
transforms, but using this filtered set of data, and with the addi-
tional caveat that when selecting σ1..n and π1..n for a trial, πk must
occur temporally after some σ′

k and π′
k satisfying π′

k ∈ Tpast(σ
′
k).

Because we operate on a filtered set of accounts depending on Tpast,
n is potentially different in each case.

We begin by performing this analysis for Tpast = T , for trees
T defined by the same transform sets T considered in §4.1 (i.e.,
T ∈ {TED, TEDM, TLI, TLIP}) and the same depths d considered
there. In this way, we measure the utility of the preceding use of
transforms in T in predicting their future use. The results of this
study are shown in Figure 9. It is evident from that these filtered
accounts have a significantly higher probability of being broken
by searching using T , as can be seen by comparing the columns la-
beled P (πr ∈ T (σr)) in Figures 5 and 9. Put another way, if an ac-
count contains passwords in which one (π′

r) is created from another
(σ′

r) by applying some ~t ∈ Tpast, then future passwords for this ac-
count (πr) are more likely to be created by applying transforms
again to some old password σr (i.e., P (πr ∈ T (σr)) is higher for
T = Tpast). In some cases the effect is so strong that well over
half of the accounts exhibit it; e.g., the case in which T = TLI and
d = 3 yields P (πr ∈ T (σr)) = .63.

Somewhat surprisingly, though, E(min{i : ~ti(σr) = πr} | πr ∈
T (σr)) does not show a consistent improvement in Figure 9 over
that in Figure 5. The reason is that filtering the accounts using Tpast

reduces the number n of accounts to roughly half of the accounts
used in the analysis of Figure 5. The corresponding reduction in the
training data during the 5-fold cross validation tests causes a decay
in the quality of orderBemts output by Bemts. To demonstrate this
effect, we repeated our tests on n accounts selected uniformly at
random from the set used in the Figure 5 tests, and show the results

for such tests in Figure 9 under the heading “n randomly selected
accounts”. We now see that the n accounts chosen by filtering using
Tpast are, in fact, less costly to attack than random samples of the
same number n of accounts from the data used in Figure 5.

The consequences of this analysis for offline and online attacks
are noteworthy. For an offline attack, where an attacker possesses
σk and can check guesses at πk unmitigated, it can break πk using
a transform-based search typically in a majority (e.g., 63% in the
case of T = TLI, d = 3) of accounts in which the user previously
used the same transforms to generate a new password π′

k from a
past password σ′

k. Moreover, the speed with which the attacker can
do so is comparable to, or faster than, that indicated in Figure 6. For
an online attack, where the attacker must submit guesses at πk to
a server, the success rates for the attacker on these accounts is also
enhanced, e.g., reaching 39% attack success in the first 4 viable
password guesses in the case of T = TLIP and d = 1.

The preceding analysis indicates that those users who use trans-
forms in various classes (TED, TEDM, TLI, TLIP) tend to do so again.
It is tempting to assume that this is the case even for smaller (but
still natural) classes of transforms, such as the component sub-
classes of TLI, namely Tcap, Tdel, Tdup, Tsub, Tins, Tleet, Tmov, and
Tkey. To our surprise, however, we found this is not always the case.
Specifically, Figure 10(a) shows P (πr ∈ T (σr)) for experiments
using the same methodology as used in Figure 9 (i.e., filtering using
Tpast), but with d = 3 and with Tpast set to one or the union of two
component subclasses of TLI. (In Figure 10, we define Tpast using
Tpast = T 1

past ∪ T 2
past, where T 1

past and T 2
past range over {Tcap, Tdel,

Tdup, Tsub, Tins, Tleet, Tmov, Tkey}.) Note that in Figure 10(a), where
T = Tpast, most values for P (πr ∈ T (σr)) are relatively small
in comparison to those in Figure 9. In fact, of the subclasses of
TLI, only the previous use of a transform from Tsub is a very strong
predictor for the future use of such a transform again. In contrast,
many other classes are good predictors for the future use of trans-
forms in TLI in general, as shown in Figure 10(b) where T = TLI.
As an interesting and extreme example, the previous use of a trans-
form in Tleet ∪ Tkey is not a good predictor for the future use of a
transform from that class (P (πr ∈ T (σr)) = .05 in Figure 10(a))
but is a very strong predictor for the future use of some transform
from TLI in general (P (πr ∈ T (σr)) = .75 in Figure 10(b)).

5. DISCUSSION
It is possible that some will view our study as motivation to em-

ploy transform-based proactive password checking for new pass-
words as they are chosen, and indeed our transform-based algo-
rithm could be used to implement such a proactive password checker.
We caution against this, however. It would not be straightforward

T 2
past

Tcap Tdel Tdup Tsub Tins Tleet Tmov Tkey

T 1
past

Tcap .11 .10 .18 .62 .08 .05 .11 .12
Tdel .12 .20 .62 .27 .06 .13 .11
Tdup .21 .62 .07 .13 .14 .17
Tsub .62 .62 .60 .61 .61
Tins .05 .04 .09 .07
Tleet .04 .10 .05
Tmov .09 .09
Tkey .13

(a) P (πr ∈ T (σr)), T = Tpast

T 2
past

Tcap Tdel Tdup Tsub Tins Tleet Tmov Tkey

T 1
past

Tcap .37 .50 .54 .71 .53 .53 .52 .50
Tdel .60 .63 .71 .77 .57 .55 .61
Tdup .59 .70 .69 .58 .55 .60
Tsub .72 .71 .70 .68 .72
Tins .66 .60 .55 .64
Tleet .59 .54 .75
Tmov .54 .55
Tkey .63

(b) P (πr ∈ T (σr)), T = TLI

Figure 10: Evaluation of accounts with history of transform use

(§4.2), Tpast = T 1
past ∪ T 2

past, d = 3. Averages of 10 trials.

to explain to a user the new passwords she must avoid (or why
her chosen password is unacceptable), thereby compounding the
already considerable frustration that users already experience due
to password expiration (e.g., [1, 17]). For example, the most effec-
tive instance of our transform-based framework that we report here
involves applying 534 transforms at a depth of three levels; were
this used as a proactive password checker, explaining the unaccept-
able passwords to users would be a challenge, to say the least.

We believe our study casts doubt on the utility of forced pass-
word expiration. Even our relatively modest study suggests that at
least 41% of passwords can be broken offline from previous pass-
words for the same accounts in a matter of seconds, and five online
password guesses in expectation suffices to break 17% of accounts.
As we expand our consideration to other types of transform trees,
we would not be surprised to see these success rates jump signifi-
cantly. Combined with the annoyance that expiration causes users,
our evidence suggests it may be appropriate to do away with pass-
word expiration altogether, perhaps as a concession while requiring
users to invest the effort to select a significantly stronger password
than they would otherwise (e.g., a much longer passphrase).

In the longer term, we believe our study supports the conclu-
sion that simple password-based authentication should be aban-
doned outright. There is already considerable evidence that human-
chosen passwords are typically too weak to survive a patient brute-
force attacker; see the related works discussed in §2, not to men-
tion our own password cracking activity described in §4 to support
our study. The alternatives are well-known: biometrics, device-
based solutions, etc. While debating these alternatives is outside
the scope of the present paper, we believe that many should be
preferable to the status quo, and will only become more so as the
imbalance between attacker resources and user memory grows.

6. CONCLUSION
Password expiration is widely practiced, owing to the potential

it holds for revoking attackers’ access to accounts for which they

have learned (or broken) the passwords. In this paper we present
the first large-scale measurement (we are aware of) of the extent to
which this potential is realized in practice. Our study is grounded
in a novel search framework and an algorithm for devising a search
strategy that is approximately optimal. Using this framework, we
confirm previous conjectures that the effectiveness of expiration in
meeting its intended goal is weak. Our study goes beyond this,
however, in evaluating susceptibility of accounts to our search tech-
niques even when passwords in those accounts are individually
strong, and the extent to which use of particular types of transforms
predicts the transforms the same user might employ in the future.
We believe our study calls into question the continued use of expi-
ration and, in the longer term, provides one more piece of evidence
to facilitate a move away from passwords altogether.

Acknowledgements.
We thank Alex Everett and Karsten Honeycut for facilitating ac-

cess to the data used in this study; Anupam Gupta for helpful dis-
cussions on approximation algorithms; and the anonymous review-
ers for their comments. This work was supported in part by NSF
grants 0756998 and 0910483.

7. REFERENCES
[1] A. Adams and M. A. Sasse. Users are not the enemy. Comm.

ACM, 42(12):40–46, December 1999.

[2] S. Alexander, Jr. In defense of password expiration. Post to
LOPSA blog, April 2006.
http://lopsa.org/node/295 as of March 28, 2010.

[3] S. M. Bellovin. Unconventional wisdom. IEEE Security &

Privacy, 4(1), January–February 2006.

[4] M. Bishop. Proactive password checking. In In Proc. 4th

Workshop on Computer Security Incident Handling, 1992.

[5] S. L. Brand and J. Makey. Department of Defense password
management guideline. CSC-STD-002-85, Department of
Defense Computer Security Center, April 1985.

[6] W. E. Burr, D. F. Dodson, W. T. Polk, P. J. Bond, and A. L.
Bement. NIST special publication 800-63, version 1.0.1,
2004.

[7] S. Chiasson, A. Forget, E. Stobert, P. C. van Oorschot, and
R. Biddle. Multiple password interference in text passwords
and click-based graphical passwords. In 16th ACM

Conference on Computer and Communications Security,
pages 500–511, November 2009.

[8] G. Cormode and S. Muthukrishnan. The string edit distance
matching problem with moves. ACM Transactions on

Algorithms, 3:1–19, February 2007.

[9] A. M. De Alvare. How crackers crack passwords or what
passwords to avoid. In Second Security Workshop Program,
pages 103–112. USENIX, August 1990.

[10] A. M. De Alvare and E. E. Schultz, Jr. A framework for
password selection. In UNIX Security Workshop

Proceedings, pages 8–9. USENIX, August 1988.

[11] U. Feige, L. Lovász, and P. Tetali. Approximating min sum
set cover. Algorithmica, 40:219–234, 2004.

[12] D. Florêncio and C. Herley. A large-scale study of web
password habits. In WWW 2007, May 2007.

[13] A. Forget, S. Chiasson, P. C. van Oorschot, and R. Biddle.
Improving text passwords through persuasion. In SOUPS,
2008.

[14] D. V. Klein. Foiling the cracker: A survey of, and
improvements to, password security. In Second Security

Workshop Program, pages 5–14. USENIX, August 1990.

[15] C. Kuo, S. Romanosky, and L. F. Cranor. Human selection of
mnemonic phrase-based passwords. In SOUPS, pages 67–78,
July 2006.

[16] B. Lu and M. B. Twidale. Managing multiple passwords and
multiple logins: MiFA minimal-feedback hints for remote
authentication. In IFIP INTERACT 2003 Conference, pages
821–824, 2003.

[17] N. Massad and J. Beachboard. A taxonomy of service
failures in electronic retailing. In 41st Hawaii International

Conference on System Sciences, 2008.

[18] R. Morris and K. Thompson. Password security: A case
history. Comm. ACM, 22:594–597, November 1979.

[19] A. Narayanan and V. Shmatikov. Fast dictionary attacks on
passwords using time-space tradeoff. In 12th ACM

Conference on Computer and Communications Security,
pages 364–372, November 2005.

[20] P. Oechslin. Making a faster cryptanalytic time-memory
trade-off. In Advances in Cryptology – CRYPTO 2003, pages
617–630, August 2003.

[21] B. Patterson. Letter to Comm. ACM. Comm. ACM,
43(4):11–12, April 2000.

[22] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L.
Mazurek, L. Bauer, N. Christin, and L. F. Cranor.
Encountering stronger password requirements: User attitudes
and behaviors. In 6th Symposium on Usable Privacy and

Security, July 2010.

[23] E. H. Spafford. Opus: Preventing weak password choices.
Computers & Security, 11:273–278, 1991.

[24] G. Spafford. Security myths and passwords. Post to CERIAS
blog, April 2006. http://www.cerias.purdue.edu/
site/blog/post/password-change-myths/ as of
March 28, 2010.

[25] J. M. Stanton, K. R. Stam, P. Mastrangelo, and J. Jolton.
Analysis of end user security behaviors. Computers &
Security, 24(2):124–133, 2005.

[26] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek.
Password cracking using probabilistic context-free
grammars. In 2009 IEEE Symposium on Security and

Privacy, pages 391–405, May 2009.

[27] J. Yan. A note on proactive password checking. In ACM New

Security Paradigms Workshop, pages 127–135, 2001.

[28] J. Zhang, X. Luo, S. Akkaladevi, and J. Ziegelmayer.
Improving multiple-password recall: an empirical study.
European Journal of Information Systems, pages 1–12, 2009.

APPENDIX

A. TRANSFORM SETS TLI AND TLIP

In this appendix, we elaborate on two of the sets of primitive
transforms used in our experiments, namely TLI and TLIP. TLIP is
comprised of the top 50 transforms in TLI. These 50 transforms are
listed in Figure 11 in Perl regular expression syntax; e.g., s/1/2/
replaces the first occurrence of “1” with “2”. Also listed for each
transform t in the column labeled P (t(σr) = πr) is the probabil-
ity, under random choice r of account, that t (σr) = πr , averaged
over 1000 trials in which σ1..n and π1..n are populated as in §4.1.
This is the criterion by which these transforms were selected for
inclusion in TLIP, and so all other transforms in TLI succeeded on
fewer password pairs than these 50.

The complete set of transforms in TLI is shown in Figure 12.
TLI is composed of transforms from eight nonoverlapping sets, de-
noted Tcap, Tdel, Tdup, Tsub, Tins, Tleet, Tmov, and Tkey. The trans-

Transform t P (t(σr) = πr)
s/1/2/ 0.0126
s/2/3/ 0.0096
s/3/4/ 0.0085
s/4/5/ 0.0079
s/!/@/ 0.0067
s/5/6/ 0.0062
s/6/7/ 0.0056
s/@/#/ 0.0051
s/#/$/ 0.0050
s/7/8/ 0.0050
s/1/3/ 0.0046
s/\$/%/ 0.0045
s/8/9/ 0.0045
s/2/4/ 0.0044
s/!/!!/ 0.0044
s/3/5/ 0.0038
s/!/#/ 0.0034
s/4/6/ 0.0030
s/@/$/ 0.0028
s/(\W+)(.+)/$2$1/ 0.0027
s/!/$/ 0.0026
s/2/5/ 0.0025
s/6/8/ 0.0025
s/5/7/ 0.0025
s/0/1/ 0.0025
s/#/%/ 0.0025
s/%/!/ 0.0023
s/1/4/ 0.0023
s/7/9/ 0.0021
s/*/!/ 0.0020
s/([a-zA-Z]+)(.+)/$2$1/ 0.0019
s/&/*/ 0.0019
s/5/1/ 0.0019
s/%/&/ 0.0019
s/9/1/ 0.0018
s/\$/!/ 0.0018
s/!/*/ 0.0017
s/(\D+)(\d+)/$2$1/ 0.0017
s/%/*/ 0.0016
s/#/!/ 0.0016
s/(\d)(\W)/$2$1/ 0.0016
s/4/1/ 0.0016
s/3/1/ 0.0015
s/@/!/ 0.0015
s/2/1/ 0.0015
s/1/5/ 0.0015
s/*/@/ 0.0014
s/5/8/ 0.0014
s/@/%/ 0.0014
s/3/6/ 0.0014

Figure 11: Composition of TLIP, Perl regular expression syntax

form sets Tdel, Tsub and Tdup are motivated by the hypothesis that
users simply delete, substitute, or repeat one or more characters in
the non-alphabetic part of their old passwords when creating new
ones. These transform sets capture such behaviors, though the spe-
cial character substitutions, duplications or deletions they encom-
pass are those involving only the characters of which the password
is required to contain one or more (see §4). Tins includes inserting a
new number following an existing number, and of value either one
more or one less than that existing number. Capitalization (or re-
moving capitalization) of alphabetic characters is captured in Tcap.
Tkey contains substitutions that replace a character by the character
sharing the same keyboard key, and is restricted to only the nu-
meric keys. Tleet contains only the single-character leet transforms
shown at http://qntm.org/l33t at the time of this writing.
Finally, Tmov contains substring moves in which two adjacent sub-
strings of the password, one or both consisting of only one “type”
of character, are swapped. As these descriptions reveal, many of
these transform sets are not exhaustive, and so in this respect, the
pessimistic results of this paper are conservative.

Tins
s/1/12/ s/2/23/ s/3/34/ s/4/45/ s/5/56/ s/6/67/ s/7/78/ s/8/89/ s/9/90/ s/0/01/

s/1/10/ s/2/21/ s/3/32/ s/4/43/ s/5/54/ s/6/65/ s/7/76/ s/8/87/ s/9/98/ s/0/09/

Tcap

s/a/A/ s/b/B/ s/c/C/ s/d/D/ s/e/E/ s/f/F/ s/g/G/ s/h/H/ s/i/I/ s/j/J/

s/k/K/ s/l/L/ s/m/M/ s/n/N/ s/o/O/ s/p/P/ s/q/Q/ s/r/R/ s/s/S/ s/t/T/

s/u/U/ s/v/V/ s/w/W/ s/x/X/ s/y/Y/ s/z/Z/ s/A/a/ s/B/b/ s/C/c/ s/D/d/

s/E/e/ s/F/f/ s/G/g/ s/H/h/ s/I/i/ s/J/j/ s/K/k/ s/L/l/ s/M/m/ s/N/n/

s/O/o/ s/P/p/ s/Q/q/ s/R/r/ s/S/s/ s/T/t/ s/U/u/ s/V/v/ s/W/w/ s/X/x/

s/Y/y/ s/Z/z/

Tdel

s/1// s/2// s/3// s/4// s/5// s/6// s/7// s/8// s/9// s/0//

s/!// s/@// s/#// s/\$// s/%// s/&// s/*// s/\+// s/=// s/\{//

s/}// s/\?// s/<// s/>// s/"// s/’//

Tdup

s/1/11/ s/2/22/ s/3/33/ s/4/44/ s/5/55/ s/6/66/ s/7/77/ s/8/88/ s/9/99/ s/0/00/

s/!/!!/ s/@/@@/ s/#/##/ s/\$/\$$/ s/%/%%/ s/&/&&/ s/*/**/ s/\+/++/ s/=/==/ s/\{/{{/

s/}/}}/ s/\?/??/ s/</<</ s/>/>>/ s/"/""/ s/’/’’/

Tkey
s/1/!/ s/2/@/ s/3/#/ s/4/$/ s/5/%/ s/6/^/ s/7/&/ s/8/*/ s/9/(/ s/0/)/

s/!/1/ s/@/2/ s/#/3/ s/\$/4/ s/%/5/ s/\^/6/ s/&/7/ s/*/8/ s/\(/9/ s/\)/0/

Tleet

s/a/4/i s/a/@/i s/b/8/i s/c/(/i s/c/</i s/c/k/i s/c/s/i s/e/3/i s/g/(/i s/g/9/i

s/g/6/i s/h/#/i s/i/l/i s/i/1/i s/i/|/i s/i/!/i s/l/|/i s/l/1/i s/o/0/i s/s/5/i

s/s/$/i s/t/+/i s/t/7/i s/y/j/i s/z/2/i s/4/a/ s/@/a/ s/8/b/ s/\(/c/ s/</c/

s/k/c/ s/s/c/ s/3/e/ s/\(/g/ s/9/g/ s/6/g/ s/#/h/ s/l/i/ s/1/i/ s/\|/i/

s/!/i/ s/\|/l/ s/1/l/ s/0/o/ s/5/s/ s/\$/s/ s/\+/t/ s/7/t/ s/j/y/ s/2/z/

Tsub

s/0/1/ s/0/2/ s/0/3/ s/0/4/ s/0/5/ s/0/6/ s/0/7/ s/0/8/ s/0/9/ s/1/0/

s/1/2/ s/1/3/ s/1/4/ s/1/5/ s/1/6/ s/1/7/ s/1/8/ s/1/9/ s/2/0/ s/2/1/

s/2/3/ s/2/4/ s/2/5/ s/2/6/ s/2/7/ s/2/8/ s/2/9/ s/3/0/ s/3/1/ s/3/2/

s/3/4/ s/3/5/ s/3/6/ s/3/7/ s/3/8/ s/3/9/ s/4/0/ s/4/1/ s/4/2/ s/4/3/

s/4/5/ s/4/6/ s/4/7/ s/4/8/ s/4/9/ s/5/0/ s/5/1/ s/5/2/ s/5/3/ s/5/4/

s/5/6/ s/5/7/ s/5/8/ s/5/9/ s/6/0/ s/6/1/ s/6/2/ s/6/3/ s/6/4/ s/6/5/

s/6/7/ s/6/8/ s/6/9/ s/7/0/ s/7/1/ s/7/2/ s/7/3/ s/7/4/ s/7/5/ s/7/6/

s/7/8/ s/7/9/ s/8/0/ s/8/1/ s/8/2/ s/8/3/ s/8/4/ s/8/5/ s/8/6/ s/8/7/

s/8/9/ s/9/0/ s/9/1/ s/9/2/ s/9/3/ s/9/4/ s/9/5/ s/9/6/ s/9/7/ s/9/8/

s/!/@/ s/!/#/ s/!/$/ s/!/%/ s/!/&/ s/!/*/ s/!/+/ s/!/=/ s/!/{/ s/!/}/

s/!/?/ s/!/</ s/!/>/ s/!/"/ s/!/’/ s/@/!/ s/@/#/ s/@/$/ s/@/%/ s/@/&/

s/@/*/ s/@/+/ s/@/=/ s/@/{/ s/@/}/ s/@/?/ s/@/</ s/@/>/ s/@/"/ s/@/’/

s/#/!/ s/#/@/ s/#/$/ s/#/%/ s/#/&/ s/#/*/ s/#/+/ s/#/=/ s/#/{/ s/#/}/

s/#/?/ s/#/</ s/#/>/ s/#/"/ s/#/’/ s/$/!/ s/\$/@/ s/\$/#/ s/\$/%/ s/\$/&/

s/\$/*/ s/\$/+/ s/\$/=/ s/\$/{/ s/\$/}/ s/\$/?/ s/\$/</ s/\$/>/ s/\$/"/ s/\$/’/

s/%/!/ s/%/@/ s/%/#/ s/%/$/ s/%/&/ s/%/*/ s/%/+/ s/%/=/ s/%/{/ s/%/}/

s/%/?/ s/%/</ s/%/>/ s/%/"/ s/%/’/ s/&/!/ s/&/@/ s/&/#/ s/&/$/ s/&/%/

s/&/*/ s/&/+/ s/&/=/ s/&/{/ s/&/}/ s/&/?/ s/&/</ s/&/>/ s/&/"/ s/&/’/

s/*/!/ s/*/@/ s/*/#/ s/*/$/ s/*/%/ s/*/&/ s/*/+/ s/*/=/ s/*/{/ s/*/}/

s/*/?/ s/*/</ s/*/>/ s/*/"/ s/*/’/ s/\+/!/ s/\+/@/ s/\+/#/ s/\+/$/ s/\+/%/

s/\+/&/ s/\+/*/ s/\+/=/ s/\+/{/ s/\+/}/ s/\+/?/ s/\+/</ s/\+/>/ s/\+/"/ s/\+/’/

s/=/!/ s/=/@/ s/=/#/ s/=/$/ s/=/%/ s/=/&/ s/=/*/ s/=/+/ s/=/{/ s/=/}/

s/=/?/ s/=/</ s/=/>/ s/=/"/ s/=/’/ s/\{/!/ s/\{/@/ s/\{/#/ s/\{/$/ s/\{/%/

s/\{/&/ s/\{/*/ s/\{/+/ s/\{/=/ s/\{/}/ s/\{/?/ s/\{/</ s/\{/>/ s/\{/"/ s/\{/’/

s/\}/!/ s/\}/@/ s/\}/#/ s/\}/$/ s/\}/%/ s/\}/&/ s/\}/*/ s/\}/+/ s/\}/=/ s/\}/{/

s/\}/?/ s/\}/</ s/\}/>/ s/\}/"/ s/\}/’/ s/\?/!/ s/\?/@/ s/\?/#/ s/\?/$/ s/\?/%/

s/\?/&/ s/\?/*/ s/\?/+/ s/\?/=/ s/\?/{/ s/\?/}/ s/\?/</ s/\?/>/ s/\?/"/ s/\?/’/

s/</!/ s/</@/ s/</#/ s/</$/ s/</%/S s/</&/ s/</*/ s/</+/ s/</=/ s/</{/

s/</}/ s/</?/ s/</>/ s/</"/ s/</’/ s/>/!/ s/>/@/ s/>/#/ s/>/$/ s/>/%/

s/>/&/ s/>/*/ s/>/+/ s/>/=/ s/>/{/ s/>/}/ s/>/?/ s/>/</ s/>/"/ s/>/’/

s/"/!/ s/"/@/ s/"/#/ s/"/$/ s/"/%/ s/"/&/ s/"/*/ s/"/+/ s/"/=/ s/"/{/

s/"/}/ s/"/?/ s/"/</ s/"/>/ s/"/’/ s/’/!/ s/’/@/ s/’/#/ s/’/$/ s/’/%/

s/’/&/ s/’/*/ s/’/+/ s/’/=/ s/’/{/ s/’/}/ s/’/?/ s/’/</ s/’/>/ s/’/"/

Tmov

s/(\d+)(.+)/$2$1/ s/(\D+)(\d+)/$2$1/ s/(\W+)(.+)/$2$1/ s/(\w+)(\W+)/$2$1/

s/(\d+)(\d+)/$2$1/ s/(\W+)(\W+)/$2$1/ s/(\W+)(\d+)/$2$1/ s/(\d+)(\W+)/$2$1/

s/([a-zA-Z]+)(.+)/$2$1/ s/([ˆa-zA-Z]+)([a-zA-Z]+)/$2$1/

Figure 12: Composition of TLI, Perl regular expression syntax

